The stability of imine-containing dynamic [2]rotaxanes to hydrolysis.
نویسندگان
چکیده
Large amounts (>100 mol equivalents) of water are required to effect by hydrolysis the partial disassembly of the rings from the dumbbell components of two dynamic [2]rotaxanes. The two dynamic [2]rotaxanes are comprised of [24]crown-8 rings-each of which incorporate two imine bonds-encircling a dumbbell component composed of a dibenzylammonium ion in which each of the two benzyl substituents carries two methoxyl groups attached to their 3- and 5-positions. A mechanism for the partial disassembly of the two dynamic [2]rotaxanes, involving the cleavage of the kinetically labile imine bonds by water molecules, is proposed. The most important experimental observation to be noted is the fact that the hydrolysis of the macrocyclic diimines, associated with the templating -CH(2)NH(2)(+)CH(2)-centres in the middle of their dumbbells, turns out to be an uphill task to perform in the face of the molecular recognition provided by strong [N(+)-HO] hydrogen bonds and weaker, yet not insignificant, [C-HO] interactions. The dynamic nature of the imine bond formation and hydrolysis is such that the acyclic components produced during hydrolysis of the imine bonds can be enticed to cyclise once again around the -CH(2)NH(2)(+)CH(2)-template, affording the [2]rotaxanes. The reluctance of imine bonds, present in substantial numbers in larger molecular and extended structures, is significant when it comes to exercising dynamic chemistry in compounds where multiple imine bonds are present.
منابع مشابه
Efficient production of [n]rotaxanes by using template-directed clipping reactions.
In this article, we report on the efficient synthesis of well defined, homogeneous [n]rotaxanes (n up to 11) by a template-directed thermodynamic clipping approach. By employing dynamic covalent chemistry in the form of reversible imine bond formation, [n]rotaxanes with dialkylammonium ion (-CH(2)NH(2)(+)CH(2)-) recognition sites, encircled by [24]crown-8 rings, were prepared by a thermodynamic...
متن کاملSelf-assembly, stability quantification, controlled molecular switching, and sensing properties of an anthracene-containing dynamic [2]rotaxane.
The preparation of a novel anthracene-containing dynamic [2]rotaxane by a templating self-assembly process between a diamine and a dialdehyde to form a [24]crown-8 macrocyclic diimine, in the presence of a dumbbell containing a secondary dialkylammonium ion center as the template, which has been exploited for its sensing properties. By appealing to the ability of the anthracene ring system--one...
متن کاملConstruction of photoswitchable rotaxanes and catenanes containing dithienylethene fragments.
Mechanically interlocked structures such as rotaxanes and catenanes provide a novel backbone for constructing functional materials with unique structural characteristics. In this study, we have designed and synthesized a series of photoswitchable rotaxanes and catenanes containing photochromic dithienylethene fragments using a template-directed clipping approach based on dynamic imine chemistry...
متن کاملFormation of a hetero[3]rotaxane by a dynamic component-swapping strategy.
Acid-catalysed scrambling of the mechanically interlocked components between two different homo[3]rotaxanes, constituted of dumbbells containing two secondary dialkylammonium ion recognition sites encircled by two [24]crown-8 rings, each containing a couple of imine bonds, affords a statistical mixture of a hetero[3]rotaxane along with the two homo[3]rotaxanes, indicating that neither selectivi...
متن کاملSquaraine-derived rotaxanes: sterically protected fluorescent near-IR dyes.
A squaraine dye with bulky end groups is employed as the thread component in two Leigh-type amide rotaxanes. The rotaxanes are synthesized in a simple two-step process. X-ray crystal structures of the rotaxanes show that the pyridyl-containing macrocycle is more rigid and wraps more tightly around the cyclobutene core of the squaraine thread compared to the isophthalamide-containing macrocycle....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Organic & biomolecular chemistry
دوره 8 1 شماره
صفحات -
تاریخ انتشار 2010